Định nghĩa tổng quát Giá trị riêng và vectơ riêng

Khái niệm giá trị riêng và vectơ riêng được mở rộng một cách tự nhiên cho các biến đổi tuyến tính trên các không gian vectơ tùy ý. Cho V là một không gian vectơ bất kỳ trên một trường vô hướng K, và cho T là một tự đồng cấu tuyến tính từ V vào chính nó,

T : V → V . {\displaystyle T:V\to V.}

Ta gọi một vectơ v ∈ V khác vectơ không là một vectơ riêng của T khi và chỉ khi tồn tại vô hướng λ ∈ K sao cho

T ( v ) = λ v . {\displaystyle T(\mathbf {v} )=\lambda \mathbf {v} .}

 

 

 

 

(5)

Phương trình này được gọi là phương trình (định nghĩa) giá trị riêng của T, và vô hướng λ được gọi là một giá trị riêng của T tương ứng với vectơ riêng v. T(v) là kết quả sau khi áp dụng biến đổi T lên vectơ v, còn λv là tích của vô hướng λ với vectơ v.[39][40]

Không gian con riêng, số bội hình học và cơ sở riêng

Cho một giá trị riêng λ, xét tập hợp

E = { v : T ( v ) = λ v } , {\displaystyle E=\left\{\mathbf {v} :T(\mathbf {v} )=\lambda \mathbf {v} \right\},}

đây là tập hợp tất cả vectơ riêng ứng với λ hợp với vectơ không. E được gọi là không gian con riêng hay không gian đặc trưng của T tương ứng với giá trị riêng λ.

Bởi định nghĩa của một biến đổi tuyến tính ta có,

T ( x + y ) = T ( x ) + T ( y ) , T ( α x ) = α T ( x ) , {\displaystyle {\begin{aligned}T(\mathbf {x} +\mathbf {y} )&=T(\mathbf {x} )+T(\mathbf {y} ),\\T(\alpha \mathbf {x} )&=\alpha T(\mathbf {x} ),\end{aligned}}}

với mọi cặp (x,y) ∈ V và α ∈ K. Vì thế, nếu uv là các vectơ riêng của T tương ứng với giá trị riêng λ, tức là u,v ∈ E, thì

T ( u + v ) = λ ( u + v ) , T ( α v ) = λ ( α v ) . {\displaystyle {\begin{aligned}T(\mathbf {u} +\mathbf {v} )&=\lambda (\mathbf {u} +\mathbf {v} ),\\T(\alpha \mathbf {v} )&=\lambda (\alpha \mathbf {v} ).\end{aligned}}}

Vì vậy, cả u + v và αv hoặc là vectơ không hoặc là vectơ riêng của T tương ứng với λ, tức là u + v, αv ∈ E, và E là đóng đối với phép cộng vectơ và nhân vô hướng. Không gian con riêng E tương ứng với λ vì thế là một không gian con của V.[41] Nếu không gian con riêng đó có số chiều bằng 1, đôi khi nó được gọi là đường thẳng riêng.[42]

Số bội hình học γT(λ) của một giá trị riêng λ là số chiều của không gian con riêng ứng với λ, tức là số tối đa các vectơ riêng độc lập tuyến tính ứng với giá trị riêng đó.[10][29] Bởi định nghĩa của giá trị riêng và vectơ riêng, ta có γT(λ) ≥ 1 vì mỗi giá trị riêng đều ứng với ít nhất một vectơ riêng.

Các không gian con riêng của T luôn tạo thành một tổng trực tiếp. Hệ quả là các vectơ riêng ứng với các giá trị riêng khác nhau luôn là độc lập tuyến tính. Vì thế, tổng các số chiều của các không gian con riêng không thể vượt quá số chiều n của không gian vectơ V, và không thể có nhiều hơn n giá trị riêng khác nhau.[lower-alpha 4]

Một không gian con bất kỳ được span bởi các vectơ riêng của T là một không gian con bất biến của T, sự thu hẹp của biến đổi T về không gian con đó là chéo hóa được. Hơn nữa, nếu các vectơ riêng của T có thể span toàn bộ không gian V, hay tương đương là V là tổng trực tiếp của các không gian con riêng tương ứng với mọi giá trị riêng của T, thì có thể lập một cơ sở của V từ các vectơ riêng độc lập tuyến tính của T được gọi là cơ sở riêng. Nếu T có một cơ sở riêng thì T được gọi là chéo hóa được.

Vectơ riêng là vectơ không

Trong khi định nghĩa vectơ riêng sử dụng trong bài viết này loại trừ vectơ không, ta vẫn có thể định nghĩa giá trị riêng và vectơ riêng theo một cách mà vectơ không có thể là một vectơ riêng.[43]

Ta lại xét Phương trình định nghĩa (5). Định nghĩa giá trị riêng là bất kỳ vô hướng λ ∈ K sao cho tồn tại một vectơ khác không v ∈ V thỏa mãn (5). Cần chú ý rằng định nghĩa giá trị riêng theo cách này phải yêu cầu vectơ khác vectơ không, nếu không thì bất kỳ vô hướng nào trong K cũng sẽ là giá trị riêng của vectơ không. Định nghĩa vectơ riêng v tương ứng với giá trị riêng λ là một vectơ bất kỳ thỏa mãn (5) với λ được cho trước. Cho trước một giá trị riêng, vectơ không cũng là một vectơ thỏa mãn Phương trình (5), nên nó cũng là một vectơ riêng theo định nghĩa này.

Lý thuyết phổ

Bài chi tiết: Lý thuyết phổ

Nếu λ là giá trị riêng của T, thì toán tử (T − λI) không là song ánh hay không tồn tại nghịch đảo (T − λI)−1. Mệnh đề đảo là đúng đối với trường hợp không gian vectơ hữu hạn chiều nhưng không đúng với vô hạn chiều. Tổng quát, toán tử tuyến tính (T − λI) có thể vẫn có nghịch đảo ngay cả khi λ không phải là giá trị riêng.

Vì lý do này, trong giải tích hàm các giá trị riêng có thể được tổng quát hóa thành phổ của một toán tử tuyến tính T tức là tập hợp tất cả các vô hướng λ sao cho toán tử (T − λI) không có nghịch đảo bị chặn. Phổ của một toán tử chứa tất cả các giá trị riêng nhưng không chỉ giới hạn ở chúng.

Đại số kết hợp và lý thuyết biểu diễn

Ta có thể tổng quát hóa cấu trúc đại số tác động lên không gian vectơ, thay thế một toán tử tác động lên một không gian vectơ bằng một biểu diễn đại số – một đại số kết hợp tác động lên một mô đun. Nghiên cứu các tác động này là lĩnh vực của lý thuyết biểu diễn.

Khái niệm trọng số trong lý thuyết biểu diễn là một tương tự của khái niệm giá trị riêng, trong đó vectơ trọng số và không gian trọng số tương ứng là các tương tự của vectơ riêng và không gian con riêng.

Tài liệu tham khảo

WikiPedia: Giá trị riêng và vectơ riêng http://scienceapplets.blogspot.com/2012/03/eigenva... //books.google.com/books?id=5VjSaAf35 //books.google.com/books?id=S_RJAAAAcAAJ&pg=PA225 //books.google.com/books?id=pkESXAcIiCQC&pg=PA111 http://www.physlink.com/education/AskExperts/ae520... http://people.revoledu.com/kardi/tutorial/LinearAl... http://www.sixtysymbols.com/videos/eigenvalues.htm http://www.sosmath.com/matrix/eigen1/eigen1.html http://jeff560.tripod.com/e.html http://mathworld.wolfram.com/Eigenvector.html